對流尺度預報誤差特性分析 與 資料同化影響評估

鍾高陞,陳立昕,柯靜吟

Acknowledgement: 廖宇慶教授、楊舒芝教授

2016 Conference on Weather Analysis and Forecasting Oct. 6th, 2016

Outline

1. Introduction and motivation

2. Case study and setup

3. Results of forecast error structures

4. Summary

Introduction Data assimilation at convective scale:

Challenge:

- High temporal and space variability
- No simple balances can be used
- Observing system: measurements (e.g. radar network) are not direct model variables (U,V,W,P,T)

Radar observations (Doppler wind, reflectivity)

To Initialize

Numerical Weather Prediction

(U,V,P,T...)

Forward model (observation operator)

$$V_r = u \frac{x}{r} + v \frac{y}{r} + (w + V_t) \frac{z}{r}, \quad Z = 43.1 + 17.5 \log(\rho q_r).$$

By using Canadian HREnKF and assimilating Vr from single Doppler radar

Is it able to propagate information to other control variables?

Verification of radial wind for very short-term forecast (0-90 min)

Localized convection on June 12, 2011

Assimilating Vr and Z of radar network in Taiwan [3-km]

(Prof. Yu-Cheing Liou and Shu-Chih Yang)

WRF-LETKF Radar Assimilation System WLRAS (Tsai et al 2014)

Assimilating both radial wind and reflectivity Case study on 2008/06/14-15 SoWMEX IOP8

5-hr accumulated precipitation

Q: By assimilating radial wind and reflectivity of radar network, why we still need a longer assimilation window to improve QPF? [Motivation]

Definition and methodology

What is the forecast (background) errors?

In data assimilation:

The "optimal" analysis fields can be obtained only if the statistics of the background and observations errors can be accurately describe.

Examine Forecast error at convective scale Over Taiwan area (Island, Ocean and Terrain)

Model configuration

Error Variance (Spread)

0.3

0.6

 $(g/kg)^2$

0.9

1.2

1.5

200

800

1000 +

Pressure (hPa)

200

400

800

1000

200

400

800

0.00

Pressure (hPa)

Error Variance (Spread)

0.40

 $(K)^2$

0.60

0.20

15th Jun., 2008

0.80

Pressure (hPa)

- D2(9-km)

15th Jun., 2008

Higher model resolution is associated with larger background errors

Capture the smaller-scale weather features

Large uncertainty is good for data assimilation

Error Correlation: D2(9km) vs. D3(3km)

0615-18 , z = 11 , cor. u-t

0615-18 , z = 11 , cor. v-qv

♦ Mesoscale forecast error correlation (9-km resolution, ~700 mb)

0615-18 , z = 11 , cor. v-v

- Less strong / very local correlations between control variables at convective scale
- Multi-scale information

0615-18 , z = 11 , cor. t-t

Now, focus on 3-km resolution (convective scale)

Variance (uncertainty) in time

Error of Auto Correlation (850 mb)

Error Correlation in Time

MCS

Summary

- By assimilating radar radial wind observations, it is able to modify other control variables (temperature and humidity fields). However, it may take many cycles to have significant modifications.
- The forecast errors at convective scale shows that:
 - 1) model of high resolution is associated with larger uncertainties;
 - 2) multi-scale situation is both showed in variance and correlation
 - 3) less strong correlation / very localized between control variables, especially for rain mixing ratio (qr);
 - 4) the correlation drops quickly in time, so frequent assimilation of radar observation is necessary.
- If we want to reduce the cycling process and obtain the new analysis rapidly, high-density observations of temperature / humidity are needed. (remote sensing, meso-net, radiometer)

Radar Reflectivity ($\eta = 1$)

Chung et al. 2013

(a) Non-Precipitation Precipitation

(c) Precipitation

FIG. 12. Vertical error correlation of temperature of 30-min forecast in (a) subdomain 7, (b) subdomain 24, and (c) subdomain 10. The vertical error structure is computed at approximately 600 hPa and averaged in each subdomain (3600 pixels).

Background Error Correlation

The threshold for the smallest significant correlations.(Houtekamer and Mitchell 1988)

$$\overline{(\rho-\hat{\rho})^2} = \frac{1}{N}(1-\rho^2)^2 \approx \frac{1}{N}(1-\hat{\rho}^2)^2.$$

 ρ : true correlation; $\hat{\rho}$: estimated correlation from N sample pairs.

$$\rho \approx \hat{\rho} \pm [\frac{1}{N}(1-\hat{\rho}^2)^2]^{1/2}$$

(e.g.)
$$0.5 \pm \left[\frac{1}{72}(1 - 0.5^2)^2\right]^{0.5} \Rightarrow [\mathbf{0.412}, 0.588]$$

 $0.7 \pm \left[\frac{1}{72}(1 - 0.7^2)^2\right]^{0.5} \Rightarrow [\mathbf{0.640}, 0.760]$